Control Systems : Set 7 : Loopshaping (3) - Solutions

Prob 1 | The Nyquist plot of an open-loop stable system resembles the one shown in the figure below.
What are the gain and phase margin(s) for this system given that @ = 0.4, 8 = 1.3 and ¢ = 40°7
Describe what happens to the stability of the system as the gain goes from zero to a very large
value. Sketch what the corresponding Bode plot would look like for the system.
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Note: What is shown in the figure is only half of the Nyquist plot from w = 0 to w = oo (i.e.,
the part that corresponds to the Bode diagram). The full nyquist plot also contains the range
w = —o0 to w = 0. However, since the coefficients of the polynomials in our system G(s) are
always real numbers, the segment from [0, oo] will always be a reflection across the real axis of
the segment from [—o0, 0].

The phase margin can be read from the plot as PM = 40°, but now there are several gain
margins. If the system gain is increased (multiplied) by ﬁ or decreased (divided) by |8,
then the system will be unstable.

For very low values of gain, the entire Nyquist plot would be shrunk, and the —1 point would
occur to the left of the negative real axis crossing at w,, so there would be no encirclements
and the system would be stable. As the gain increases, the —1 point occurs between w,
and w; so there is an encirclement and the system is unstable. Further increase of the gain
causes the —1 point to occur between w; and wy so there is no encirclement and the system
is stable. Even more increase in the gain would cause the —1 point to occur between wy
and the origin where there is an encirclement and the system is unstable. The Bode plot
would be vaguely like that drawn below:
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Prob 2 | The steering dynamics of a ship are represented by the transfer function

V(s) _ _
55~ 0=

K(0.1s+1)
s(0.55 4+ 1)2(0.05s + 1)

where v is the ship’s velocity in meters per second and §, is the rudder angle in radians.

a) Use Matlab to generate the Bode plot for K = 0.2
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b) Indicate the phase margin and the gain margin on the plot

103

Weg
Wep

[Gm,Pm, Weg, Wep] = margin (0.2*G)

Gm = 24.5559
Pm = 79.2547
= 2.2297
= 0.1981




| The closed-loop system would be stable.

c¢) Is the ship steering system stable for K = 0.5

[Gm,Pm, Wcg, Wep] = margin (0.5*%G)

Gm = 9.8224
Pm = 64.6990
Weg = 2.2297
Wep = 0.4738

Yes, the ship would still be stable.

d) What value of K would yield a PM of 30° and what would the crossover frequency be?

[Gm,Pm, Wcg,Wep] = margin (1.6*G)

Gm = 3.0695
Pm = 31.9328
Weg = 2.2297
Wep = 1.1886

From the plot we see that a phase of —150 degrees is obtained at a frequency of 1.2

rad/sec, which corresponds to a gain of |G(j1.2)| = 0.6160. We set K = 1/0.616 =
1.6.




Prob 3 | Consider the Bode plot and the Nyquist plot for the system G(s) below.
Show how the ultimate period (the period of oscillation for Ziegler-Nichols tuning) and the
ultimate gain (the gain at which the system oscillates) can be read from the Bode plot and from
the Nyquist plot.
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The ultimate gain occurs when a proportional controller causes the system to be on the
border of unstable, i.e., when the system passes through the Nyquist point. On the Bode
plot, we see that this is when the phase is —180°, and then the gain is increased /decreased
until it passes through 0dB. From the bode plot, we can see that this is the Gain Margin,
which is approximately 6dB. We can also read the gain margin of 2 = 6dB from the
Nyquist plot as shown.



Prob 4 | A speed control system is shown in the figure below. Note that the speed sensor is slow enough
that its dynamics mush be included, since the speed-measurement time constant is 7,, = 0.5sec.
The time constant of the drive being controlled is T, = J/b = 4sec, where the damping constant
b=1N-m- sec and the motor time constant is 7; = 1sec.

Amplifier Motor Drive
w e(t) P M(s) = 1 D(s) = 1 3
: - l Cms+1 * = Js+b
Sensor
1
H = —-—
() Tms + 1

a) Determine the gain K required to keep the steady-state speed error to less than 7% of the
reference speed setting

This is a Type 0 system, and we want the error in response to a step change in the
reference

: 1
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So we get the result that K > 13.3 to achieve a tracking error of less than 7%.

b) Consider the bode plot of the open-loop system M(s)D(s)H(s) show below. Determine the

gain and phase margins for the value of K determined above. Is a proportional controller
a good design for this system?
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From the bode plot, we can read the GM as approximately 25dB. However, the
control gain K was set to 13.3 = 22.5dB in the previous part, and therefore the GM
of KM(s)D(s)H(s) is 25 —22.5 = 2.5dB.

The phase margin is the phase when the magnitude plot goes through the point
—K = —22.5dB (i.e., the zero-dB point of the system KM(s)D(s)H(s)). We can see
that this is about 7°.

We can conclude that the phase margin and gain margin for this system are far too
low, as can be seen from the step response of the closed-loop system shown below.
Therefore, if we want to achieve a tracking error of 7% and better gain and phase
margins (better robustness, less oscillation), then we will need to choose a control
structure other than a simple proportional gain.
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Prob 5 | A block diagram of a control system is shown in the figure below.
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a) What is the system type?

We first re-draw the block diagram in a standard form:

~ s+3 1
R - 0'5K15+ 10 s(s+ (10 + K»))

We can now see that there is one integrator in the forward path, and therefore this is
a Type-1 system.

Alternatively, we could compute the transfer function from the reference to the error,
and apply the final value theorem as when we derived the system types in the first
place.

b) If R is a step input and the system is closed-loop stable, what is the steady-state tracking
error?

The system is Type-1 and so there will be no tracking error for step inputs.

¢) What is the steady-state error to a ramp input of velocity 5.0 if Ko = 2 and K is adjusted
to give a system step overshoot of 17%?7 Use Matlab and the step command to determine
the value of Kj.

Our first step is to find the value of K; that results in an overshoot of 17%. This can
be done by simply trying different values of K; in Matlab until it looks reasonable.
However, we can also write a simple search program (which assumes that the overshoot
is monotonic in Kj).

o

% Search range for k1
min_kl = 1;
max_kl = 1000;

while max kl - min k1 > le-3




kl = mean ([max_kl min_k1]);

% Compute closed-loop system

G=1/(s*(s+10));

K2 = k2*s:

G_inner = feedback (G,K2);

Kl = k1*(s+3)/(s+10);

sys_cl = 0.5*feedback (K1*G__inner,0.5);

% Compute information about the step response

dat = stepinfo(sys_cl);

fprintf(’kl = %5.2f Overshoot = %5.1{%%\n’, k1, 100*dat.Overshoot );

% Reduce the search interval
if dat.Overshoot < 0.17

min_kl = k1;
else

max_kl = k1;
end

end

The result is K; = 1177.5, and the resulting step response is shown below.
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We can now compute the velocity constant
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We plot below the error in response to a unit ramp input, and see that indeed there
is a steady-state error of 1/ = 1/14.7 = 0.068.
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